您的位置:首页 > 教案 > 数学教案 > 【abaqus基准面】abaqus基准手册

【abaqus基准面】abaqus基准手册

时间:2019-09-18   来源:数学教案   点击:   投诉建议

【www.chinawenwang.com--数学教案】

abaqus限元分析软件建立了以最小化关键面上装夹变形引起的形位(略)数的装夹优化数学模型,分析了基于有限元分析软件(ABAQUS)的装夹方案优化流程和关键问题,基于优化模型和优化流程完成了装夹方案的优化.下面是小学生作文网www.zzxu.cn 小编为大家带来的abaqus基准手册,希望能帮助到大家! 

  abaqus基准手册(一)

  abaqus点滴

  采用abaqus的cae进行力学问题的分析,其对模型的处理存在很多的技巧,对abaqus的一些分析技巧进行一些概述,希望对大家有所帮助。

  abaqus的多图层绘图

  abaqus的cae默认一个视区仅仅绘出一个图形,譬如contor图,变形图,x-y曲线图等,其实在abaqus里面存在一个类似于origin里面的图层的概念,对于每个当前视区里面的图形都可以建立一个图层,并且可以将多个图层合并在一个图形里面,称之为Overlay Plot,譬如你可以在同一副图中,左边绘出contor图,右边绘出x-y图等等,并且在abaqus里面的操作也是很简单的。

  1.首先进入可视化模块,当然要先打开你的模型数据文件(.odb)

  2.第一步要先创建好你的图形,譬如变形图等等

  3.进入view里面的overlay plot,点击creat,创建一个图层,现在在viewport layer里出现了你创建的图层了

  4.注意你创建的图层,可以看到在visible 下面有个选择的标记,表示在视区里面你的图层是否可见,和autocad里面是一样,取消则不可见current表示是否是当前图层,有些操作只能对当前图层操作有效,同cad name是你建立图层的名称,其他的属性值和你的模型数据库及图形的类型有关,一般不能改动的。

  5.重复2-4步就可以创建多个图层了

  6.创建好之后就可以选择plot/apply,则在视区显示出所有的可见的图层

  子结构的概述

  1.什么是子结构

  子结构也叫超单元的(两者还是有点区别的,文后会谈到),子结构并不是abaqus里面的新东东,而是有限元里面的一个概念,所谓子结构就是将一组单元组合为一个单元(称为超单元),注意是一个单元,这个单元和你用的其他任何一种类型的单元一样使用。

  2.为什么要用子结构

  使用子结构并不是为了好玩,凡是建过大型有限元模型的兄弟们都可能碰到过计算一个问题要花几个小时,一两天甚至由于单元太多无法求解的情况,子结构正是针对这类问题的一种解决方法,所以子结构肯定是对一个大型的有限元模型的,譬如在求解非线性问题的时候,因为对于一个非线性问题,系统往往经过多次迭代,每次这个系统的刚度矩阵都会被重新计算,而一般来说一个大型问题往往有很大一部分的变形是很小的,把这部分作为一个子结构,其刚度矩阵仅要计算一次,大大节约了计算时间。

  3.哪些情况可以使用子结构

  前面提到的非线性问题,包括了很小变形的或者线弹性部分可以使用子结构,特别是当模型中有很多相同的部分时,提到的最多的一个例子就是桌子的四条腿,四条腿作为子结构(因为基本时弹性变形)可以包括了很多的实体单元,可以大大提高效率再一个就是问题确实太大,只有采用子结构将问题分成很多块,计算出结果后再次采用子结构分块计算,一直到能对每块单独计算为止。

  4.abaqus中子结构的特点及要注意的问题

  子结构是一组单元的集合,但是在子结构中仅仅只有你指定的那些节点的自由度会保留下来而其他节点的自由度都被消除了,其他的节点均是通过线性插值的方式获得求解;

  子结构是通过你指定的节点与其他的单元建立联系的;在abaqus的6.4版本中只有子结构这个概念没有超单元了,其区别就是子结构可以求得单元内部准确的解而超单元不行;当你定义子结构的时候不要包含太多的单元,因为单元的刚度矩阵集成的时候会花掉太多的时间,可以用更多的含有较少单元的子结构代替。

  5.在abaqus中子结构的用法

  一般包括如下部分,首先你要利用substructure generate和retained nodal dofs定义一个子结构,然后你可以定义子结构的内部荷载,边界条件一旦你已经定义了子结构以后你就可以象利用一般的单元一样使用子结构了,譬如输出请求等等。因为内容太多只能另外的文章再述了,大家也可以直接看看手册,要注意的是,abaqus cae是不支持子结构的。

  如何在不同的分析步改变材料的参数

  我所了解的大概有三种不同的方法:

  1.最强大的当然是采用umat的方式,不过需要有深厚的有限元基础,一般人不推荐使用

  2.采用场变量,不过功能相对简单

  3.采用abaqus的import命令将前面分析的结果传递到新的分析之中

  这里介绍下第二种方法

  *什么是场变量

  所谓场变量,我的理解就是一个环境变量,它建立了一个与材料参数之间的中介,虽然不能直接指定材料参数在不同的分析步具有不同的值,但是通过场变量,间接的达到了目的。

  *怎样使用场变量

  其实场变量用的较多的实在热力学和流体力学的分析种,这里介绍的仅仅是在固体力学中的用法

  1.定义场变量

  *你可以在initial中指定场变量的值,格式如下

  initial conditions,type=field,variable=n(场变量的编号)

  Set-1(你定义的结点集),1.0(场变量的值)

  场变量是通过编号来识别的,一次只能定义一个场变量

  *你也可以直接在分析步中指定场变量的值,格式如下

  *field, variable="1"

  Set-1,1

  当然也可以同时使用initial和field,当你指定的场变量改变时,默认材料的参数是在增量步间线性变化的。

  2.建立材料参数和场变量之间的联系

  如果你用cae,在prop模块里面的材料参数一般都有Number of field variables,场变量都是从1开始的,你也可以选择多个场变量。填入场变量的值和材料参数间的关系,譬如

  杨是模量 泊松比 field1

  200.E9, 0.3, 1.

  180.E9, 0.3, 2.

  如果你用的是命令格式,则在inp文件里面键入:

  *ELASTIC, DEPENDENCIES="1"

  200.E9, 0.3, , 1.

  180.E9, 0.3, , 2.

  第四个参数表示场变量的值

  3.注意

  场变量在不同分析步中的值有你在不同的分析步中指定,如果没有指定,材料参数默认微是场变量1的值,例如

  *STEP,name=step1

  *STATIC......

  *FIELD, VARIABLE="1"

  NALL, 1.

  *END STEP

  *STEP,name=step2

  *STATIC......

  *FIELD, VARIABLE="1"

  NALL, 2.

  *END STEP

  cae步支持场变量,所以你必须自己更改inp文件

  4.技巧

  如果材料的参数变化比较复杂,一般是利用副职曲线来定义场变量值的变化,

  *FIELD, VARIABLE="1",amplitude=???

  对幅值曲线步清楚的自己可以看手册

  模型的重启动分析-restart

  按理说restart不应该算是一个分析的技巧,而是一个常识,不过呢可能有很多朋友没有建过大型模型导致restart也用的较少,所以也介绍下。

  1.什么是restart

  你的job可能包含多个step,可是如果你的模型很大,可能会有这样一种情况,当你花了几天几夜,终于分析好的时候,你发现the first step的边界条件设置的有问题,这对于你真是晴天霹雳,于是你只好重新来过,可是第二天你发现你的电脑restart,这时的你可能只能问上帝了,how can i do?

  *restart,就是将一个复杂的模型分析过程分成很多的阶段,甚至是一个increatment step一个阶段,你可以对每个阶段的结果进行检验,然后进入下一个阶段进行分析。

  2.重启动需要那些文件

  对于standard来说,.res,.mdl,.stt,.prt,.odb,这些文件是用于重启动的,explict是.abq,.stt,.prt,.odb.

  3.如何在一个分析中设置重启动来生成以上文件。

  这里只介绍下在standard的用法, 其实很简单?

  inp文件里面加入*RESTART, WRITE, FREQUENCY="N就可以了"

  cae默认加入了重启选项,不过可以在step->output->restart request里面设置输出的频率,也就是frequency。

  *技巧:因为res文件包含了模型的几乎全部信息,所以非常大,你可以设置overlay参数使后面的数据覆盖吊前面的数据,不过restart的话你也只能从最后一个增量步开始

  4.如何重启

  你要指定一个重启点,inp文件里面加上*RESTART, READ, STEP="step", INC="increment就可以了cae中更简单",首先在model->edit attribute里面选择restart,指定前面分析的job名和你想重启动的开始分析步和增量步就可以了,然后在job里面指定重新创建的工作类型,restart,that's all.

  5.注意

  重启动不能改变你的原始分析中的任何参数,也就是说,你的启动点的模型必须和原始分析中的模型完全一致的,所以不要企图采用restart的方法来改变边界条件,材料参数或者网格的密度等等。这些需要另外的技巧来实现。

  ABAQUS 的材料行为模式

  弹性材料:

  Linear elasticity (线弹性)

  No compression or tension elasticity (无压缩或位伸弹性材料,即单力性材料)

  Plane stress orthotropic failure (平面应力单元)

  Porous elasticity (多孔弹性)

  Hypoelasticity (亚弹性)

  Hyperelasticity (超弹性)

  Foam elasticity (泡沫单元)

  Viscoelasticity (粘弹性)

  非弹性材料

  Classical metal plasticity (塑性)

  Metals subjected to cyclic loading (受周期荷载金属单元)

  Rate-dependent yield(率相关屈服单元)

  Creep and Swelling (蠕变)

  Anisotropic yield and creep (各向异性)

  Porous metal plasticity (多孔塑性)

  Deformation plasticity (塑变单元)

  Granular materials or polymers (粒状材料或复合材料)

  Clay plasticity (粘土塑性)

  Crushable foam plasticity (可压泡沫塑性)

  Jointed material (?……)

  Concrete (混凝土)

  二.有限元理论

  (一)关于应力应变

  金属的工程应力(未变形单位面积上的力)称为名义应力,与之相对应的为名义应变(每单位未变形长度的伸长)。 ----名义应力 -----名义应变

  在只考虑 的情况下,拉伸和压缩应变是相同的,即:

  ,其中l是当前长度, 是原始长度, 为真实应变或对数应变。与真实应变对应的真实应力: ,F为材料受力,A是当前面积。

  在ABAQUS中必须用真实应力和真实应变定义塑性.ABAQUS需要这些值并对应地在输入文件中解释这些数据。

  然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。

  考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为:

  当前面积与原始面积的关系为:

  将A的定义代入到真实应力的定义式中,得到:

  其中 也可以写为 。

  这样就给出了真实应力和名义应力、名义应变之间的关系:

  真实应变和名义应变间的关系很少用到,名义应变推导如下:

  上式各加1,然后求自然对数,就得到了二者的关系:

  ABAQUS中的*PLASTIC选项定义了大部分金属的后屈服特性。ABAQUS用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。

  在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为:

  其中 是真实塑性应变, 是总体真实应变, 是真实弹性应变。

  总体应变分解为弹性与塑性应变分量

  实验数据转换为ABAQUS输入数据的示例

  下图中的应力应变曲线可以作为一个例子,用来示范如何将定义材料塑性特性的实验特性的实验数据转换为ABAQUS适用的输入格式。名义应力-应变曲线上的6个点将成为*PLASTIC选项中的数据。

  第一步是用公式将名义应力和名义应变转化为真实应力和应变。一旦得到这些值,就可以用公式不确定与屈服应力相关联的塑性应变。下面给出转换后的数据。在小应变时,真实应变和名义应变间的差别很小,而在大应变时,二者间的就会有明显的差别;因此,如果模拟的应变比较大,就一定要向abaqus提供正确的应力-应变数据。定义这种材料的输入数据格式在图中给出。

  (二). 对于受力的大小,受力的方式,还有本构方程参数的选择对于模型是否收敛影响很大.

  泊松比的影响:材料的泊松比的大小对于网格的扰动影响很大,在foam中,由于其泊松比是0,所以它对于单元的扰动不是很大。所以在考虑到经常出现单元节点被翻转过来的现象,可以调整泊松比的大小。

  REMESH:对于creep的,特别是材料呈现非线性的状态下,变形很大,就有必要对其进行重新划分网格,用map solution来对其旧网格进行映射。这就要决定何时进行重新划分网格,这个就要看应变的增长幅度了,通过观察网格外形的变化曲线来决定是否要进行重新划分区域。

  接触表面的remesh时,网格类型,单元数目等必须和原有的mesh保持一致,这个对于contact的计算十分重要。但是对于刚体表面的remesh没有这个必要的,单元数目可以减少,网格可以粗化,但是对于非刚体,一般将网格进行细化。

  对于NIGEOM(非线性):

  the load must be applied gradually. We apply the load gradually by dividing the step into increments。

  Omit this parameter or set NLGEOM=NO to perform a geometrically linear analysis during the current step. Include this parameter or set NLGEOM=YES to indicate that geometric nonlinearity should be accounted for during the step (stress analysis and fully coupled thermal-stress analysis only). Once the NLGEOM option has been switched on, it will be active during all subsequent steps in the analysis.

  几何非线性是与分析过程中模型的几何改变想联系的,几何非线性发生在位移的大小影响到了结构响应的情况,可能由于是大绕度后者是转动;突然的翻转;初应力或载荷硬化。

  塑性分析中的注意问题:对于大应变,真实应变和名义应变之间的差值就会很大,所以在给abaqus提供应力-应变数据时,一定要注意正确的给予赋值,在小应变的情况下,真实应变和名义应变之间的差别很小,不是很重要。

  对于单元的选择:在ABAQUS中存在一类杂交的单元族,还有一类缩减的单元存在,这些用于模拟超弹性材料的完全不可压缩特性的。但是线性减缩积分单元由于存在所谓的沙漏(hourglass)的数值问题而过于柔软,所以似使得网格容易被扭曲,因而在小冲孔的蠕变模拟中会出现error,因此最好选用其它的单元做分析,当然也可以加hourglass进行补充。数学描述和积分类型对实体单元的准确性都能产生显著的影响。

  对于大应变的扭曲的模拟(大变形分析)最好选用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)。

  对于接触问题,采用线性减缩积分单元或者非协调单元,在模型中选用非协调单元可以使得网格的扭曲减小到最小。

  单元性质:*solid section对于三维和轴对称单元不需要附加任何几何信息的,节点的坐标已经能够完整的定义单元的几何形状。而平面应力和平面应变单元则必须在数据行指定单元的厚度。

  数值奇异性:在没有边界的时候,在模型上因为有限的计算精度,讲存在很小的非平衡力,如果模型应用于经理模型而没有边界条件(只有作用力),这个非平衡力就会引起模型发生无限的刚体运动。这个刚体的运动在数学上被称为数值的奇异性。当abaqus在模拟时检验出数值奇异性的时候,会将节点等问题信息打出来。一般模拟结果有奇异性时不可信的,必须要加约束。

  后处理:对于一些输出的类型的转化,含义具体可以见CAE26-10

  其实对于应力,还有V值的大小的变化,主要还是调起始的时间的步长,这个其实步长可能要取到1e-20,杨镇的曲线,他的起始步长就需要很小的(我用了0.00000000000001),但是不加损伤,后来步长增加很快的,没有什么东西了

  三、CAE点滴

  1. 在建模作基面(草绘)时,Approximate size的大小对方便地进行平面绘图很有意义。一般取欲画尺寸的125%。

  2. 当草绘时,作任一平面图形(一般是闭合的)其边界可以从任意地方开始,但好的起点终点对以后分网很有用处,一般地,起点、终点取习惯上的顶点、圆弧零度位置等特殊位置处,这样网格质量较高。

  3. ABAQUS/CAE建模思想与proe等专业CAD软件相似,都是特征建模,即:通过平面产生的基面以拉伸、旋转、扫掠等生成体。

  4. 作为feature的一种,草绘中对某些关键形状标以尺寸对以后方便的对part进行修改很有用。

  5. 建模过程中,合理有效的用好基准Datum(面、轴、点)对建立复杂的part有用!

  6. Part可进行copy,copy的结果是将原part的所有特性(此前已指定)全部继承下来,可以通过delete其中的一些feature来形成新的part,在delete时,某一feature如果前后相关,则与之相关的都将被delete(如:在基准面内做的feature,则删除基准时此feature也被删除),一旦delete将不能恢复,但如果只是想暂时“不见它”,可以从tool中suppress它。

  7. 关于坐标系的问题:在part模块中使用的都是局部坐标系,而模型需要在assembly模块中进行全局定位(此中为整体坐标系)。(这对于只有一个part的模型来说没什么问题,但多个part的模型需要用constrain来进行整合),第一个进入assembly中的part的坐标系被默认为整体坐标系。

  8. 刚性曲面的建立,其材料、约束等性质需要通过施加在一个刚性参考点上才能得以实现。

  9. 在assembly中,为防止第二个instance在建立进在视图中与第一个相叠,通常在创建第二个时打开Auto-offset from other instances选项。

  abaqus基准手册(二)

  ABAQUS学习笔记

  作者: 周立@NET2005-09-30 20:47分类:默认分类标签:

  ABAQUS学习笔记

  一.AQUS-.inp编码介绍

  (一).ABAQUS头信息文件段(1-4)

  1.*PREPRINT 输出求解过程所要求的信息(在dat文件中)

  ie:*PREPRINT, ECHO=YES, HISTORY=YES, MODEL=YES

  2.*HEADING 标题输出文件(出现在POST/VIEW窗口中,且出现在结果输出文件中)

  ie:*HEADING

  STRESS ANALYSIS FOR A PLATE WITH A HOLE

  3.*RESTART 要求abaqus/standard输出其POST/view模块所需要的.res文件。其中的FREQ=?控制结果在每次迭代(或载荷步)输出的次数。

  ie:*RESTART, WRITE, FREQ=1

  4.*FILE FORMAT 要求abaqus/standard输出到.fil中的某些信息。它也用于post。对于在后处理中得到x-y形式的诸如应力-时间、应力-应变图有用!

  ie: *FILE FORMAT, ZERO INCREMENT

  (二).ABAQUS网格生成段

  定义结点、单元,常用的命令有:结点定义(*NODE,*NGEN),单元定义(*ELEMENT,*ELGEN等)。

  1.*NODE 定义结点,其格式为:

  *NODE

  结点号,x轴坐标,y轴坐标,(z轴坐标)

  2.*NGEN 在已有结点的基础上进行多个结点的生成,一般是在两结点间以某种方式(直线、圆)产生一定分布规律的结点。

  如:*NGEN, LINE=C, NSET=HOLE,

  119, 1919, 100, 101 在两结点(结点号为119,1919)间以圆弧形式生成多个结点,100为任意相邻结点的单元号增量,101为圆弧形成时圆心位置的结点(对于直线形式生成没有此结点)。所有这些生成的结点(包括119,1919)被命名成HOLE的集合(这样做的目的是以后的命令中使用到它,比如说对这些结点施加同等条件的边界条件或载荷等,HOLE就是这些结点的代称)。*NGEN使用的前提就是必须存在已有结点。

  *NGEN, NSET=OUTER

  131, 1031, 100 以线形式形成结点,结点号增量100,结点集合名为OUTER。

  *NGEN, NSET=OUTER

  1031, 1931, 100 同上生成结点,可以同上结点集合名,这样OUTER就包括这两次生成的所有结点

  3.*NFILL 在如上生成的结点集(实际上,代表两条几何意义上的边界线)之间按一定规律(BIAS=?)填充结点。这样所有生成的结点构成一定形状的实体(面)。

  如:*NFILL, NSET=PLATE, BIAS=0.8

  HOLE, OUTER, 12, 1 以HOLE为第一条边界,OUTER为第二条边界(终止边),以从疏到密的规律(BIAS小于1)分布,其生成结点数在两内外对应结点间为12,1为每组结点号的增量。所有这些结点被置于PLATE的集合中。

  下面以上面生成的结点来生成单元:

  4.*ELEMENT

  定义单元所使用的类型(TYPE=?),然后另行定义通过联结结点形成单元,其结点数目依靠单元类型而变。

  *ELEMENT, TYPE=CPS4 //采用四单元的平面应力单元

  19, 119, 120, 220, 219 //定义顺序:单元号,以逆时针方向形成单元的各结点号

  (三)ABAQUS单元

  注意:分析前要选择合适的元素,这时要考虑的问题就是:使用什么样类型的单元?有限元的基本思路就是将实际中的连续体离散化,实际结果是将众多离散分析结果的集合,这似乎有点像积分的概念。选择元素种类最重要考虑的是分析必要的现象,满足必要的准确度基础上去掉不必要的细节与准确度。是选择1-D, 2-D or 3-D单元、用于何种分析的单元、是否高阶单元等。

  (四)ABAQUS材料

  ABAQUS本身提供了丰富的材料库供分析使用,并已能满足常用的分析。但对于新型本构关系的材料abaqus本身是无法体现的,UMAT则为这个问题提供了解决。自己编程将材料的应力应变本构表示出来,ABAQUS调用完成分析。

  ABAQUS 的材料行为模式主要分为

  弹性材料:

  w Linear elasticity (线弹性)

  w No compression or tension elasticity (无压缩或位伸弹性材料,即单力性材料)

  w Plane stress orthotropic failure (平面应力单元)

  w Porous elasticity (多孔弹性)

  w Hypoelasticity (亚弹性)

  w Hyperelasticity (超弹性)

  w Foam elasticity (泡沫单元)

  w Viscoelasticity (粘弹性)

  非弹性材料

  w Classical metal plasticity (塑性)

  w Metals subjected to cyclic loading (受周期荷载金属单元)

  w Rate-dependent yield(率相关屈服单元)

  w Creep and Swelling (蠕变)

  w Anisotropic yield and creep (各向异性)

  w Porous metal plasticity (多孔塑性)

  w Deformation plasticity (塑变单元)

  w Granular materials or polymers (粒状材料或复合材料)

  w Clay plasticity (粘土塑性)

  w Crushable foam plasticity (可压泡沫塑性)

  w Jointed material (?……)

  w Concrete (混凝土)

  (五)ABAQUS求解

  对于一个inp文件,不进入CAE时,需要这样做:

  1. 检查inp文件的正确性(当然主要是指keyword的使用),自己能做检查最好,否则可以通过:ABAQUS datacheck job=yourjobname

  2. 检查确认修正后进行计算:

  通过:ABAQUS job=yourjobname

  3. 检验分析结果的合理性:不只是会算,更要会对分析结果进行确认。首先要对整个分析及分析的并键之处成竹在心。然后可以通过以下途径作结果确认:

  ①自已能够得到的解析解

  ②实验数据

  ③其它数值解

  ④别人的求解结果(当然你得信任他)

  ⑤直觉与经验

  4. 如果迭代无法收敛:需要通过.msg,.sta文件查看出错信息并做出判断(在CAE中submit分析时可以通过monitor查看),判断依据为:

  ①结构约束是否足够或过多

  ②材料数据是否正确

  ③单元是否适合此分析

  ④网格有没有过扭曲、奇异

  ⑤接触单元是否足够

  ⑥步长是否过大

  二.有限元理论

  (一)关于应力应变

  金属的工程应力(未变形单位面积上的力)称为名义应力,与之相对应的为名义应变(每单位未变形长度的伸长)。 ----名义应力 -----名义应变

  在只考虑 的情况下,拉伸和压缩应变是相同的,即:

  ,其中l是当前长度, 是原始长度, 为真实应变或对数应变。与真实应变对应的真实应力: ,F为材料受力,A是当前面积。

  在ABAQUS中必须用真实应力和真实应变定义塑性.ABAQUS需要这些值并对应地在输入文件中解释这些数据。

  然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。

  考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为:

  当前面积与原始面积的关系为:

  将A的定义代入到真实应力的定义式中,得到:

  其中 也可以写为 。

  这样就给出了真实应力和名义应力、名义应变之间的关系:

  真实应变和名义应变间的关系很少用到,名义应变推导如下:

  上式各加1,然后求自然对数,就得到了二者的关系:

  ABAQUS中的*PLASTIC选项定义了大部分金属的后屈服特性。ABAQUS用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。

  在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为:

  其中 是真实塑性应变, 是总体真实应变, 是真实弹性应变。

  总体应变分解为弹性与塑性应变分量

  实验数据转换为ABAQUS输入数据的示例

  下图中的应力应变曲线可以作为一个例子,用来示范如何将定义材料塑性特性的实验特性的实验数据转换为ABAQUS适用的输入格式。名义应力-应变曲线上的6个点将成为*PLASTIC选项中的数据。

  第一步是用公式将名义应力和名义应变转化为真实应力和应变。一旦得到这些值,就可以用公式不确定与屈服应力相关联的塑性应变。下面给出转换后的数据。在小应变时,真实应变和名义应变间的差别很小,而在大应变时,二者间的就会有明显的差别;因此,如果模拟的应变比较大,就一定要向abaqus提供正确的应力-应变数据。定义这种材料的输入数据格式在图中给出。

  (二). 对于受力的大小,受力的方式,还有本构方程参数的选择对于模型是否收敛影响很大.

  泊松比的影响:材料的泊松比的大小对于网格的扰动影响很大,在foam中,由于其泊松比是0,所以它对于单元的扰动不是很大。所以在考虑到经常出现单元节点被翻转过来的现象,可以调整泊松比的大小。

  REMESH:对于creep的,特别是材料呈现非线性的状态下,变形很大,就有必要对其进行重新划分网格,用map solution来对其旧网格进行映射。这就要决定何时进行重新划分网格,这个就要看应变的增长幅度了,通过观察网格外形的变化曲线来决定是否要进行重新划分区域。

  接触表面的remesh时,网格类型,单元数目等必须和原有的mesh保持一致,这个对于contact的计算十分重要。但是对于刚体表面的remesh没有这个必要的,单元数目可以减少,网格可以粗化,但是对于非刚体,一般将网格进行细化。

  对于NIGEOM(非线性):

  the load must be applied gradually. We apply the load gradually by dividing the step into increments。

  Omit this parameter or set NLGEOM=NO to perform a geometrically linear analysis during the current step. Include this parameter or set NLGEOM=YES to indicate that geometric nonlinearity should be accounted for during the step (stress analysis and fully coupled thermal-stress analysis only). Once the NLGEOM option has been switched on, it will be active during all subsequent steps in the analysis.

  几何非线性是与分析过程中模型的几何改变想联系的,几何非线性发生在位移的大小影响到了结构响应的情况,可能由于是大绕度后者是转动;突然的翻转;初应力或载荷硬化。

  塑性分析中的注意问题:对于大应变,真实应变和名义应变之间的差值就会很大,所以在给abaqus提供应力-应变数据时,一定要注意正确的给予赋值,在小应变的情况下,真实应变和名义应变之间的差别很小,不是很重要。

  对于单元的选择:在ABAQUS中存在一类杂交的单元族,还有一类缩减的单元存在,这些用于模拟超弹性材料的完全不可压缩特性的。但是线性减缩积分单元由于存在所谓的沙漏(hourglass)的数值问题而过于柔软,所以似使得网格容易被扭曲,因而在小冲孔的蠕变模拟中会出现error,因此最好选用其它的单元做分析,当然也可以加hourglass进行补充。数学描述和积分类型对实体单元的准确性都能产生显著的影响。

  对于大应变的扭曲的模拟(大变形分析)最好选用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)。

  对于接触问题,采用线性减缩积分单元或者非协调单元,在模型中选用非协调单元可以使得网格的扭曲减小到最小。

  单元性质:*solid section对于三维和轴对称单元不需要附加任何几何信息的,节点的坐标已经能够完整的定义单元的几何形状。而平面应力和平面应变单元则必须在数据行指定单元的厚度。

  数值奇异性:在没有边界的时候,在模型上因为有限的计算精度,讲存在很小的非平衡力,如果模型应用于经理模型而没有边界条件(只有作用力),这个非平衡力就会引起模型发生无限的刚体运动。这个刚体的运动在数学上被称为数值的奇异性。当abaqus在模拟时检验出数值奇异性的时候,会将节点等问题信息打出来。一般模拟结果有奇异性时不可信的,必须要加约束。

  后处理:对于一些输出的类型的转化,含义具体可以见CAE26-10

  其实对于应力,还有V值的大小的变化,主要还是调起始的时间的步长,这个其实步长可能要取到1e-20,杨镇的曲线,他的起始步长就需要很小的(我用了0.00000000000001),但是不加损伤,后来步长增加很快的,没有什么东西了

  三、CAE之点滴

  1. 在建模作基面(草绘)时,Approximate size的大小对方便地进行平面绘图很有意义。一般取欲画尺寸的125%。

  2. 当草绘时,作任一平面图形(一般是闭合的)其边界可以从任意地方开始,但好的起点终点对以后分网很有用处,一般地,起点、终点取习惯上的顶点、圆弧零度位置等特殊位置处,这样网格质量较高。

  3. ABAQUS/CAE建模思想与proe等专业CAD软件相似,都是特征建模,即:通过平面产生的基面以拉伸、旋转、扫掠等生成体。

  4. 作为feature的一种,草绘中对某些关键形状标以尺寸对以后方便的对part进行修改很有用。

  5. 建模过程中,合理有效的用好基准Datum(面、轴、点)对建立复杂的part有用!

  6. Part可进行copy,copy的结果是将原part的所有特性(此前已指定)全部继承下来,可以通过delete其中的一些feature来形成新的part,在delete时,某一feature如果前后相关,则与之相关的都将被delete(如:在基准面内做的feature,则删除基准时此feature也被删除),一旦delete将不能恢复,但如果只是想暂时“不见它”,可以从tool中suppress它。

  7. 关于坐标系的问题:在part模块中使用的都是局部坐标系,而模型需要在assembly模块中进行全局定位(此中为整体坐标系)。(这对于只有一个part的模型来说没什么问题,但多个part的模型需要用constrain来进行整合),第一个进入assembly中的part的坐标系被默认为整体坐标系。

  8. 刚性曲面的建立,其材料、约束等性质需要通过施加在一个刚性参考点上才能得以实现。

  9. 在assembly中,为防止第二个instance在建立进在视图中与第一个相叠,通常在创建第二个时打开Auto-offset from other instances选项。

  abaqus基准手册(三)

  abaqus

  所属类别 : 软件

  ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。 ABAQUS 包括一个丰富的、可模拟任意几何形状的单元库。并拥有各种类型的材料模型库,可以模拟典型工程材料的性能,其中包括金属、橡胶、高分子材料、复合材料、钢筋混凝土、可压缩超弹性泡沫材料以及土壤和岩石等地质材料,作为通用的模拟工具, ABAQUS 除了能解决大量结构(应力 / 位移)问题,还可以模拟其他工程领域的许多问题,例如热传导、质量扩散、热电耦合分析、声学分析、岩土力学分析(流体渗透 / 应力耦合分析)及压电介质分析。

  ABAQUS 有两个主求解器模块- ABAQUS/Standard 和 ABAQUS/Explicit。ABAQUS 还包含一个全面支持求解器的图形用户界面,即人机交互前后处理模块 - ABAQUS/CAE 。 ABAQUS 对某些特殊问题还提供了专用模块来加以解决。

  ABAQUS 被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。 ABAQUS 不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究。 ABAQUS 的系统级分析的特点相对于其他的分析软件来说是独一无二的。由于 ABAQUS 优秀的分析能力和模拟复杂系统的可靠性使得 ABAQUS 被各国的工业和研究中所广泛的采用。 ABAQUS 产品在大量的高科技产品研究中都发挥着巨大的作用。

  折叠编辑本段功能

  静态应力/位移分析:包括线性,材料和几何非线性,以及结构断裂分析等

  动态分析粘弹性/粘塑性响应分析:粘塑性材料结构的响应分析

  热传导分析:传导,辐射和对流的瞬态或稳态分析

  质量扩散分析:静水压力造成的质量扩散和渗流分析等

  耦合分析:热/力耦合,热/电耦合,压/电耦合,流/力耦合,声/力耦合等

  非线性动态应力/位移分析:可以模拟各种随时间变化的大位移、接触分析等

  瞬态温度/位移耦合分析:解决力学和热响应及其耦合问题

  准静态分析:应用显式积分方法求解静态和冲压等准静态问题

  退火成型过程分析:可以对材料退火热处理过程进行模拟

  海洋工程结构分析:

  对海洋工程的特殊载荷如流载荷、浮力、惯性力等进行模拟

  对海洋工程的特殊结构如锚链、管道、电缆等进行模拟

  对海洋工程的特殊的连接,如土壤/管柱连接、锚链/海床摩擦、管道/管道相对滑动等进行模拟

  水下冲击分析:

  对冲击载荷作用下的水下结构进行分析

  柔体多体动力学分析:对机构的运动情况进行分析,并和有限元功能结合进行结构和机械的耦合分析,并可以考虑机构运动中的接触和摩擦

  疲劳分析:根据结构和材料的受载情况统计进行生存力分析和疲劳寿命预估

  设计灵敏度分析:对结构参数进行灵敏度分析并据此进行结构的优化设计

  软件除具有上述常规和特殊的分析功能外,在材料模型,单元,载荷、约束及连接等方面也功能强大并各具特点:

  材料模型:定义了多种材料本构关系及失效准则模型,包括:

  弹性:线弹性,可以定义材料的模量、泊松比等弹性特性

  正交各向异性,具有多种典型失效理论,用于复合材料结构分析

  多孔结构弹性,用于模拟土壤和可挤压泡沫的弹性行为

  亚弹性,可以考虑应变对模量的影响

  超弹性,可以模拟橡胶类材料的大应变影响

  粘弹性,时域和频域的粘弹性材料模型

  折叠编辑本段塑性

  金属塑性,符合Mises屈服准则的各向同性和遵循Hill准则的各向异性塑性模型

  铸铁塑性,拉伸为Rankine屈服准则,压缩为Mises屈服准则

  蠕变,考虑时间硬化和应变硬化定律的各向同性和各向异性蠕变模型

  扩展的Druker-Prager模型,适合于沙土等粒状材料的不相关流动的模拟

  Capped Drucker-Prager模型,适合于地质、隧道挖掘等领域

  Cam-Clay模型,适合于粘土类土壤材料的模拟

  Mohr-Coulomb模型,这种模型与Capped Druker-Prager模型类似,但可以考虑不光滑小表面情况

  泡沫材料模型,可以模拟高度挤压材料,可应用于消费品包装、及车辆安全装置等领域混凝土材料模型,这种模型包含了混凝土弹塑性破坏理论渗透性材料模型,提供了依赖于孔隙比率、饱和度和流速的各向同性和各向异性材料的渗透性模型。

  其它材料特性:

  包括密度、热膨胀特性、热传导率和导电率、比热、压电特性、阻尼以及用户自定义材料特性等

  单元库:ABAQUS包括内容丰富的单元库,单元种类多达562种。它们可以分为8个大类,称为单元族,包括:

  - 实体单元

  - 壳单元

  - 薄膜单元

  - 梁单元

  - 杆单元

  - 刚体元

  - 连接元

  - 无限元 还包括其中针对特殊问题构建的特种单元如针对钢筋混凝土结构或轮胎结构的加强筋单元(*Rebar)、针对海洋工程结构的土壤/管柱连接单元(*Pipe-Soil)和锚链单元(*Drag Chain),还有专门的垫圈单元和空气单元等特殊的单元等,这些单元对解决各行业领域的具体问题非常有效。

  另外,用户还可以通过用户子程序自定义单元种类。

  对ABAQUS进行二次开发也极为方便,ABAQUS支持FORTRAN或VC++来二次开发。

  载荷、约束及连接:

  载荷

  载荷包括均匀体力、不均匀体力、均匀压力、不均匀压力、静水压力、旋转加速度、离心载荷、弹性基础,伴随力效应,集中力和弯矩,温度和其他场变量,速度和加速度等。

  约束

  除常规的约束外,还提供线性和非线性的多点约束(MPC),包括刚性链、刚性梁、壳体/固体连接、循环对称约束和运动耦合等。 连接强大的接触对定义与分析功能为管接头接触密封分析,铰链连接分析,壳体密封分析等带来极大的便利。

  折叠编辑本段对比分析

  ABAQUS软件与ANSYS软件的对比分析

  1.在世界范围内的知名度:

  两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。

  由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。

  2.应用领域:

  ANSYS软件注重应用领域的拓展,覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。

  3.性价比

  ANSYS软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。购买ABAQUS软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。因此,从综合效益和长远效益而言,ABAQUS软件的经济性也是非常突出的。

  4.求解器功能

  对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。

  ABAQUS软件在求解非线性问题时具有非常明显的优势。其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。

  另外,由于ABAQUS/Standard(通用程序)和ABAQUS/Explicit(显式积分)同为ABAQUS公司的产品,它们之间的数据传递非常方便,可以很容易地考虑预紧力等静力和动力相结合的计算情况。

  ABAQUS软件的求解器是智能化的求解器,可以解决其它软件不收敛的非线性问题,其它软件也收敛的非线性问题,ABAQUS软件的计算收敛速度较快,并更加容易操作和使用。

  5.人机交互界面

  ABAQUS/CAE是ABAQUS公司新近开发的软件运行平台,他汲取了同类软件和CAD软件的优点,同时与ABAQUS求解器软件紧密结合。

  与其他有限元软件的界面程序比,ABAQUS/CAE具有以下的特点:

  l 采用CAD方式建模和可视化视窗系统,具有良好的人机交互特性。

  l 强大的模型管理和载荷管理手段,为多任务、多工况实际工程问题的建模和仿真提供了方便。

  l 鉴于接触问题在实际工程中的普遍性,单独设置了连接(interaction)模块,可以精确地模拟实际工程中存在的多种接触问题。

  l 采用了参数化建模方法,为实际工程结构的参数设计与优化,结构修改提供了有力工具。

  6.综合性能对比

  综合起来,ABAQUS软件具有:

  l 更多的单元种类,单元种类达433种,提供了更多的选择余地,并更能深入反映细微的结构现象和现象间的差别。除常规结构外,可以方便地模拟管道、接头以及纤维加强结构等实际结构的力学行为

  l 更多的材料模型,包括材料的本构关系和失效准则等,仅橡胶材料模型就达16种。除常规的金属材料外,还可以有效地模拟复合材料、土壤、塑性材料和高温蠕变材料等特殊材料

  l 更多的接触和连接类型,可以是硬接触或软接触,也可以是Hertz接触(小滑动接触)或有限滑动接触,还可以双面接触或自接触。接触面还可以考虑摩擦和阻尼的情况。上述选择提供了方便地模拟密封,挤压,铰连接等工程实际结构的手段。

  l ABAQUS的疲劳和断裂分析功能,概括了多种断裂失效准则,对分析断裂力学和裂纹扩展问题非常有效。

  7.与其它软件比较

  ABAQUS是非线性计算很强的一个软件,结构计算方面比ANSYS强但是没有流体模块所以不能做流体计算,另外一个非线性很强的软件是ADINA它同时具备结构和流体分析模块目前是最好的流固耦合分析软件。

  8.网上学习途径

  网上人数比较多的论坛是百思论坛和机械论坛里面的ABAQUS区,SIMWE社区现在越来越成为abaqus学习的主流论坛,而CAE学术网是目前设立ABAQUS版块和类别最多的论坛。

  折叠编辑本段最新发布

  Abaqus 6.13

  2013年7月,Abaqus6.13发布了。Abaqus 6.13秉承SIMULIA公司的战略承诺,提供了高质量的真实仿真解决方案,其中包括许多新功能以及超过100个基于客户需求的改进。SIMULIA的客户遍及各个工业领域,包括航空航天、汽车、消费品包装、能源以及生命科学。他们使用Abaqus产品探究各种产品和材料的真实物理行为,以提高产品的性能、可靠性以及安全性,同时减少研发时间和费用。

  Abaqus 6.13的主要特点:

  折叠编辑本段应用

  冲压成型应用

  当前,制造行业加工工艺正朝着高技术的方向发展,越来越多的公司在产品研发和制造过程中开始注重仿真技术的应 用。

  采用ABAQUS进行仿真模拟的目的是节约开发成本、加快研发速度和提高产品质量。ABAQUS可以针对不同操作系统(如Unix,Linux和 Windows等)进行单机或多机并行运算,节省更多运算时间。

  下面以ABAQUS某汽车用户的车门设计为例,说明ABAQUS在冲压成型有限元模拟中的应用。

  传统的车门设计流程如图1所示。

  某型号汽车车门的传统设计流程其中主要设计及加工成本如下:

  其中,硬质模具的设计费用包含在前期软质模具设计费用之中,后期只计算修改模具设计的费用。

  采用ABAQUS进行数字仿真之后,设计流程如图2所示。

  图2 引入ABAQUS后某型号汽车车门的设计效果

  修改设计流程之后,主要设计和加工成本如下:

  经过以上计算可以明确看出,仅车门的设计费用就节约了2/3,而设计周期则缩短为原来的1/3。

  加工成形过程的数值模拟受到材料非线性、几何非线性和边界非线性的综合影响,直接计算的难度非常大。从力学 本质来看,很多的成形过程可以简化为准静态过程,对该过程的有限元模拟通常有两种方法:静力隐式方法和动力显式方法。根据动力松弛法的原理,动力系统的稳 态解和静力解是一致的。所以本文所涉及的算例均采用显式动力学的方法,即使用ABAQUS/EXPLICIT求解器模块,对不同的加工成形过程进行模拟。

  算例表明,ABAQUS在处理加工成形中可以得到令人满意的结果。

  以上实例的模拟都是在ABAQUS平台下进行的。结果表明,采用ABAQUS处理加工成型过程中所涉及到的 非线性力学问题,能够得到比较令人满意的结果。此外,ABAQUS还提供了种类丰富的用户子程序接口,用户可以根据需要编写特殊的本构关系曲线、复杂的载 荷和边界条件以及灵活多样的用户单元等,这些功能在研究领域和工业领域中都取得了广泛地应用。

  应用

  是功能最强的非线性分析软件,可应用在以下领域:建筑、勘查、地质、水利、交通、电力、测绘、国土、环境、林业等方面

  折叠编辑本段产品

  不论是你想深入了解一个复杂产品的细节行为,进行设计更新,理解新材料的力学行为,还是模拟制造工艺过程,Abaqus有限元产品都能提供最全面灵活的解决方案去完成上述任务。Abaqus产品提供高精度、可靠、高效的解决方案,用于求解非线性问题、大规模线性动力学应用以及常规的仿真。Abaqus产品集成显式和隐式求解器,这使得用户可以在后续的分析中直接使用上一个仿真分析的结果,用于考虑历史加载的影响,例如加工制造。用户自定义功能,用户界面的定制,这些灵活的手段可以更好地加入用户的想法,使得用户有更多的选择以减少分析时间。

  Abaqus有限元产品采用最新的高性能并行计算环境,允许用户的模型尽可能的复杂,而不用担心计算能力的限制。这样可以使得用户最少的简化模型,从而增加了结果的真实性,也减少了反复修改模型的时间。很多合作伙伴的产品都由于Abaqus产品强大的功能而将其内置或定制专用界面。使用全球最完整强大的有限元产品,去探索产品的真实行为并加速创新吧。

  Abaqus/CAE

  Abaqus有限元建模、后处理以及过程自动化的完整解决方案

  使用Abaqus/CAE用户可以快速高效地创建、修改、监控、诊断以及可视化Abaqus分析过程。Abaqus/CAE用户界面将建模、分析、任务管理和结果可视化功能集成为一个统一、易于操作环境之下,不论对于初学者还是有经验的用户,都非常易学和高效。Abaqus/CAE支持类似CAD一样的交互式功能,例如基于特征、参数化建模、交互式和脚本操作、用户定制界面等。

  在Abaqus/CAE中,用户可以创建几何模型,也可以导入CAD模型,或者基于几何生成网格,而这些网格跟CAD模型不再关联。CATIA V5、SolidWorks和 Pro/ENGINEER的交互式接口可以保证CAD和CAE装配模型的一致性,并且可以快速地进行模型更新而不丢失任何用户定义的分析特征。

  Abaqus/CAE开放的用户定制工具提供了强大的自动化分析流程解决方案,这样仿真专家可以定制验证好的工作流程,将仿真知识和经验固化到其中。Abaqus/CAE同样提供强大的后处理定制功能,使得用户可以读取和操作任何Abaqus分析的结果。

  Abaqus/Standard

  Abaqus/Standard适合求解静态和低速动力学问题,这些问题通常都对应力精度有很高的要求。例如垫片密封问题,轮胎稳态滚动问题,或复合材料机翼裂纹扩展问题。对于单一问题的模拟,可能需要在时域和频域内进行分析。例如在发动机分析里,首先需要模拟包含复杂垫片力学行为的发动机缸盖安装模拟,接着才是进行包含预应力的模态分析,或是在频域内的包含预应力的声固耦合振动分析。Abaqus/CAE支持Abaqus/Standard求解器的所有常用的前后处理功能。

  Abaqus/Standard计算结果可以作为初始状态用于后续的Abaqus/Explicit分析。同样的,Abaqus/Explicit计算结果也可以继续用于后续的Abaqus/Standard分析。这种集成的灵活性使得可以将复杂的问题分解,将适合用隐式方法的分析过程用Abaqus/Standard求解,例如静力学、低速动力学或稳态滚动分析;而将适合用显式方法的用Abaqus/Explicit求解,例如高速、非线性、瞬态占主导的问题。

  发布的产品

  Abaqus/AMS

  Abaqus/Standard的附加分析功能允许用户使用自动多级子结构特征值求解器(AMS)去计算模态问题。Abaqus/AMS特征值求解器的计算性能远超默认的Lanczos求解器,尤其是对于大规模模型需要提取大量的模态时。大量的模型测试表明,对于模态提取问题,AMS求解器要快10-25倍,这取决于模型的复杂程度。

  Abaqus/Aqua

  Abaqus/Aqua是用于海洋工程的一个附加模块,可以应用于海洋工程结构领域,能够完成导管架和立管的结构分析,拖管过程模拟计算以及浮体结构分析计算;可以计算结构浮力、风载荷以及波流载荷作用下的拖曳力和惯性力等环境载荷。

  Abaqus/Design

  Abaqus/Design作为Abaqus/Standard的补充附加模块,主要用于设计灵敏度分析(DSA)。设计灵敏度对于理解设计空间变化以及预测设计改变的影响都非常有用。设计灵敏度可以为再设计和基于梯度的优化提供基础。

  Abaqus/Foundation

  Abaqus/Foundation提供Abaqus/Standard中的线性静力学和线性动力学分析功能。当Abaqus/Foundation可用时,Abaqus会自动探测分析是否能够应用线性摄动分析类型,然后使用Abaqus/Foundation代替Abaqus/Standard进行分析,可以有效地节省license token使用量。

  Abaqus/Explicit

  Abaqus/Explicit是特别适合于模拟瞬态动力学为主的问题的有限元产品,例如电子产品的跌落、汽车碰撞和穿甲侵彻。Abaqus/Explicit能够高效地求解包括接触在内的非线性问题和许多准静态问题,如金属的滚压成型、吸能装置的低速碰撞。Abaqus/Explicit使用方便,可靠性高,计算高效。Abaqus/CAE支持Abaqus/Explicit求解器的所有常用的前后处理功能。

  Abaqus/Explicit计算结果可以作为初始状态用于后续的Abaqus/Standard分析。同样的,Abaqus/Standard计算结果也可以继续用于后续的Abaqus/Explicit分析。这种集成的灵活性使得可以将复杂的问题分解,将适合于显式方法的求解的高速、非线性、瞬态占主导的问题用Abaqus/Explicit求解;而适合与隐式方法的分析过程用Abaqus/Standard求解,例如静力学、低速动力学或稳态滚动分析。

  Abaqus/CFD

  Abaqus/CFD为Abaqus提供了计算流体动力学分析功能,Abaqus/CAE支持该求解器的所有的前后处理需求。并行的CFD分析功能可以求解多数的非线性流体传热和流固耦合问题。

  Abaqus/CFD可以解决以下不可压缩流动问题:

  Abaqus 附加模块

  Abaqus统一有限元产品允许用户开发定制应用,并可以将合作伙伴或自主开发的功能集成到Abaqus中。SIMULIA提供Moldflow、MSC.ADAMS和MADYMO的分析接口。FTSS的碰撞假人模型也可以在碰撞分析和乘员安全分析中使用。Abaqus各地区办公室开发了大量基于Abaqus的定制功能,例如印刷电路板模块(PWB),缠绕复合材料模块,金属覆盖成型模块等。SIMULIA也提供Fe-safe用于模拟疲劳问题。

  拓扑优化(ATOM)

  Abaqus 拓扑优化模块(ATOM)具有先进的非线性结构优化功能,为产品设计师和工程师提供满足结构需求和制造工艺的设计,同时提高产品性能、降低产品重量和费用。

  ATOM能够使Abaqus用户对单个部件或者装配体进行拓扑和外形优化,同时考虑材料非线性、接触非线性和几何非线性的影响。

  ATOM的优点:

  分析接口

  MoldFlow分析接口

  该附加模块可以将MoldFlow注塑分析的结果导入到Abaqus中,为后续的分析考虑材料方向和残余应力因素的影响。MoldFlow提供制造过程中部件的力学和热力学材料参数以及残余应力结果信息。力学参数(包括纤维角度因素的影响)信息由MoldFlow计算,并以沿部件厚度方向积分点位置处的正交各项异性参数的方式写出到接口文件中。

  MSC.ADAMS分析接口

  MSC.ADAMS分析接口可以让用户在采用MSC.ADAMS进行多体动力学分析时使用Abaqus模型的刚度信息。MSC.ADAMS分析接口可以将Abaqus模型的刚度矩阵转换为ADAMS/Flex需要的数据格式。

  MADYMO联合仿真

  该附加模块在Abaqus/Explicit中使用,可以在车辆-乘员碰撞安全模拟中使用Abaqus/Explicit和MADYMO进行联合仿真。该分析技术可以直接将Abaqus/Explicit的碰撞分析和MADYMO的乘员分析进行耦合。使用Abaqus/Explicit和MADYMO进行碰撞安全分析的用户手册可以通过AOSS下载。

  CAD交互式接口

  交互式接口能够将CAD模型传递到Abaqus/CAE中。这些功能强大的附加模块仅需鼠标轻轻一点,就可将部件或整个装配体传递到Abaqus/CAE中。用户可以在CAD软件中修改几何模型,使用交互式接口快速更新Abaqus/CAE的有限元模型,而不丢失任何分析特征。这些交互式接口需要在每个CAD软件中安装插件使用,然后在Abaqus/CAE中通过CAD连接工具建立相应的连接。

  CATIA V5交互式接口

  CATIA V5交互式接口可以使用交互式导入将CATIA V5的部件和装配体传递到Abaqus/CAE中。CATIA V5模型中的材料和组定义也可以传递到Abaqus/CAE中。除此之外,CATIA V5交互式接口还可以直接导入CATIA V5的.CATPart 和 .CATProduct格式的模型。

  CATIA V5交互式接口有以下几点功能:

  CATIA V5交互式接口需要Abaqus/CAE 6.8或以上版本,兼容CATIA V5 R18、R19、R20和R21。

  Pro/ENGINEER交互式接口

  Pro/ENGINEER 交互式接口可以使用交互式导入将Pro/ENGINEER的部件和装配体传递到Abaqus/CAE中。除了交互式导入,Pro/ENGINEER交互式接口也包含了直接导入接口,可以写出.enf_abq格式的部件和装配体。.enf_abq格式文件可以接着被导入到Abaqus/CAE中。

  Pro/ENGINEER 交互式接口可以使用户在Abaqus/CAE中修改Pro/ENGINEER模型中的特征参数,例如孔径或拉伸长度。修改后的参数会更新Pro/ENGINEER和Abaqus/CAE中的模型。

  Pro/ENGINEER交互式接口有以下几点功能:

  Pro/ENGINEER 交互式接口需要Abaqus/CAE 6.8及以上版本。

  SolidWorks交互式接口

  SolidWorks交互式接口可以轻松地将Solidworks中的部件或装配体导入到Abaqus/CAE中,接着用户可以修改Solidworks中的几何模型,该接口自动地更新Abaqus/CAE中模型修改且不丢失任何分析特征。当用户在使用Solidworks不断更改设计模型而分析工具是基于Abaqus时,SolidWorks交互式接口就显得非常有用。

  SolidWorks交互式接口有以下几点功能:

  SolidWorks交互式接口需要Abaqus/CAE 6.8EF及以上版本,且SolidWorks 为2009 SP1及以上版本。

  复合材料建模模块(CMA)

  基于Abaqus/CAE的复合材料建模模块(CMA)具有功能强大的复合材料仿真能力和先进的建模技术,补充和扩展了原有Abaqus/CAE中的复合材料功能,并与Abaqus/CAE完美的融合在一起。

  复合材料建模模块(CMA)直接将准确的纤维角度和铺层厚度传递到Abaqus分析中,并且允许快速地查看并修改复合材料模型。该产品也生成制造数据以保证分析模型与最终结构匹配,并与Simulayt公司的其他产品无缝集成。

  复合材料建模模块的优势:

  碰撞假人模型和防护栅栏模型

  碰撞假人和防护栅栏模型是用户碰撞和乘员安全分析的附加产品。这些模型在Abaqus/Explicit中使用。以下模型可用:

  前碰假人模型:

  侧碰假人模型:

  后碰假人模型:

  防护栅栏模型:

  头部模型:

  腿部模型:

  行人头部模型:

  CZone

  该功能基于Abaqus,为能量耗散复合材料结构提供先进的碰撞分析功能。

  CZone是基于Abaqus/Explicit的附加模块

2015年12月17日,美联储宣布将联邦基准利率 常州市失业金基准是多少 嘉兴首套住房贷款基准利率打几折 工作十六年解除合同失业金领取基准是什么 10年贷款基准利率 14年贷款基准利率 15年贷款基准利率 1年期贷款基准利率 1年贷款基准利率 2017 基准利率 2017基准利率 2017商业贷款基准利率 2017基准利率表 2017基准利率是多少

abaqus基准手册由小学生作文网(www.zzxu.cn)收集整理,转载请注明出处!原文地址http://www.zzxu.cn/licai/983695.html

本文来源:https://www.chinawenwang.com/jiaoan/106054.html


《【abaqus基准面】abaqus基准手册.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

推荐文章

栏目导航

友情链接

网站首页
语文
美文
作文
文学
古诗文
实用文
试题
教案
课件
素材
电子课本
百科

copyright 2016-2018 文库网 版权所有 京ICP备16025527号 免责声明:网站部分内容转载至网络,如有侵权请告知删除 投诉举报