建筑与数学的PPT资料

发布时间:2020-01-12 08:55:01   来源:文档文库   
字号:

数学与建筑

1. 数学对建筑设计的影响

我们知道路由曲直宽窄,房有大小高低。建筑必须与形和数打交道。于是建筑就与数学结下不解之缘。建筑里面讲数学,数学里面讲建筑,你中有我,我中有你。数学和建筑有着紧密的关系,数学可以说是建筑设计上的基础;而建筑可以说是实在的数学概念。除了数学,建筑还包含了美术和物理的元素,而美术和物理也是基于数学公式或数学理论为基础。可想而知,数学在建筑学上占着一个重要的地位

数学美是一种客观存在,是自然美在数学中的反映。建筑在数学思维的启发下不断发展为世界创造和谐美。早在古代建筑里就有许多建筑师就将数学中的几何体和建筑完美的组合,像古代一些圆形及其他形式的神庙,比如蒂沃里的圆形神庙,尼姆的卡列神庙;这些建筑不是简单的以几何学就能够组合的,还要通过数学的精密计算使其符合建筑设计的。

随着社会的不段进步,建筑根据功能和美感的需求,对土地、材料和结构进行堆积与组合,比例决定着建筑中个体、局部与整体的数学关系,因此比例是建筑的核心和灵魂。比例在数学上并不具有美感,但“黄金分割”的比例分割之美在各种艺术作品都得到充分的展现。现代设计师仍然最常见地使用黄金分割法则构造着适用性和艺术性统一的新颖建筑。

2. 建筑设计中所包含的数学知识

2.1建筑设计中的几何学

几何学(Geometry)这个词就来自古埃及的“测地术”,它是为在尼罗河水泛滥后丈量地界而产生的。自然界中常见的简单几何形状是圆、球、圆柱,如太阳、 月亮、植物茎干、果实等等,而几乎找不到矩形和立方体。矩形和立方体是人类的创造,而这正是和建筑活动有关的,因为方形可以不留间隙地四方连续地延展或划分,立方体可以平稳地堆垒和架设。金字塔在如此巨大的尺度下做到精确的正四棱锥,充分显示了古埃及人的几何能力。希腊人在发展欧几里德几何的同时,写下了建筑史上最辉煌的一页。希腊建筑的美在很大程度上取决于尺度和比例,“帕提农给我们带来确实的真理和高度数学规律的感受”(勒·柯布西埃)。几何学的产生则是和建筑活动密切有关的。

建筑的几何学价值首先表现在简洁美。几何学的理论基础在于格式塔心理学的视觉简化规律,简洁产生了重复性,重复演绎出高层建筑的节奏和韵律美,最终形成建筑和谐统一的审美感受;同时,简洁的形体易于谐调,使不同的形体组合具有统一美感。

新古典主义的乃是对巴洛克洛可可风格的夸张豪华过度装饰的风格产生反感受到意大利庞贝城出土的影响开始企图恢复希腊与罗马的建筑特质特别重视几何学的构成关系将几何形式带入建筑设计中文艺复兴时期,人们普遍确信建筑学是一门科学,建筑的每一部分,无论是内部还是外部,都能够被整合到数学比例中。比例成为建筑几何学在文艺复兴时期的代名词,而象心形、圆形、穹顶则是文艺复兴时期建筑的基本形式,只要人们用几何化的形式来诠释宇宙和谐概念的话,就无法避免这些形式。在这一时期,建筑师追求绝对的、永恒的、秩序化的逻辑,形式的完美取代了功能的意义。例如上海的东方明珠电视塔,就是几何学中的圆柱与球的结合。三根竖直的圆柱形通天巨柱,是一个球体完美的结合。东方明珠电视塔利用球和圆柱的巧妙结合,将数学的严谨与艺术的浪漫融为一体,创造了纯洁的、充满诗情画意的建筑形象。

2.1.1 几何学在建筑中的早期运用

几何学的开端可以追溯到古埃及、古印度和古巴比伦。早期的几何学是关于长度、角度、面积和体积的经验原理,用于测绘、建筑、天文和各种工艺制作。通常认为,几何学是geometry的音译,其词头geo土地的意思,词尾metry测量学的意思,合起来即土地测量学。可见,建筑学与几何学的关联由来已久。

2.1.2 文艺复兴时期的建筑几何学

到了文艺复兴时期,人们普遍确信建筑学是一门科学,建筑的每一部分,无论是内部还是外部,都能够被整合到数学比例中。比例成为建筑几何学在文艺复兴时期的代名词,而象心形、圆形、穹顶则是文艺复兴时期建筑的基本形式,只要人们用几何化的形式来诠释宇宙和谐概念的话,就无法避免这些形式。在这一时期,建筑师追求绝对的、永恒的、秩序化的逻辑,形式的完美取代了功能的意义。

2.1.3 科学改革之后的建筑几何学

17世纪科学革命所揭示的宇宙是一部数学化的机器。这一时期法国最重要的建筑理论家都是科学家,在笛卡尔理性主义精神的引导下,一切问题讨论的基础都以理性为原则,数学被认为是保准确性客观性的唯一方法。笛卡尔通过解析几何沟通了代数与几何,蒙日则将平面上的投影联系起来,在《画法几何》中第一次系统地阐述了平面图式空间形体方法,将画法几何提高到科学的水平。与传统的模拟视觉感受方式不同,画法几何切断了视觉与知识之间的直接联系,赋予建筑以不受个人主观认识影响的客观真实性,时至今日仍然是建筑学交流最重要的媒介。

2.2建筑设计中的等差数列数列

按一定次序排列的一列数列为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2……排在第n位的数列为这个数列的第n项。

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,前N项和用Sn表示。

在中国现存的排列最整齐的大型塔群宁夏一百零八塔,着108座塔,排列成12.从上往下,各行塔数次为1,3,3,5,5,7,9,11,13,15,17,19.这些都是奇数。在这其中就隐藏着数学的规律,在数学里,利用等差数列可知:连续前n奇数的和,等取n=10,得1+3+5+7+9+11+13+15+17+19=100,总共要建108座塔,其中100座可以安排成连续奇数119的和。剩下8座可以拆成3+5,也是奇数的和。由此得出分拆表达式108=1+3+3+5+5+7+9+11+13+15+17+19,正好是一百零八塔自上而下各排塔的个数。

2.3建筑中的拓扑学

2.3.1 拓扑学——几何的一门分支

拓扑学是几何学的一个分支,拓扑几何学主要是考虑一维、二维、三维或者四维的低维拓扑学,但是又和通常的平面几何、立体几何等欧式几何不同。我们熟知的欧式几何是研究图形(作为刚体)在运动中的不变性质点、线、面、体之间的位置关系、度量性质。在欧氏几何中,运动只能是刚性运动(平移、旋转、反射)。在这种运动中图形上任意两点间的距离保持不变。因此,欧氏几何的性质就是在刚性运动中保持不变的性质,即图形的任何刚性运动都丝毫不改变图形的几何性质。在拓扑中所允许的运动是弹性运动,在拓扑学里所研究的图形,在运动中无论它的大小或者形状不发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。拓扑学的非线性、不确定性与流动性颠覆了传统笛卡尔体系的稳定性,使得传统的形态等级变得模糊,各形态元素之间的互相依赖得到了加强。正是由于拓扑几何学形态变化的多维性和复杂性,随着计算机的普及它可以在建筑、城市、园林等领域得到更广泛的运用。

2.3.2 园林中的拓扑学

园林拓扑学的研究方法是基于拓扑几何学的,因此,园林中的各个要素会相应地抽象为拓扑几何对象点、线、面、体来研究,包括造景的四大要素:建筑、花木、水、山石,以及由四大要素围合而成的园林空间。在拓扑几何里,它们是作为点的集合存在,边缘构成了约当曲线,线构成面,面构成体,各对象不仅可以平移、旋转,还可以进行拉伸、收缩、弯曲、扭转、接合、断裂等变化,构成一个复杂的数学模型和空间体系。从拓扑学角度探讨园林空间的演变形式,可将复杂的形体、空间体系抽象成数学模型,将美学与数学结合,将传统方法与现代思维结合,找到了一种理性的研究方法,拓宽了园林空间的变化的幅度,为设计者提供了一种新的设计途径。

2.4列举一些建筑中的数学原理

2.41利用悬链线原理计的圣路易斯大拱门(图一)

2.42利用凸曲面的赵州桥(图二)

2.43数学拓扑学中的圆明园迷宫(图三)

2.44建筑中的对称泰姬陵(图四)

2.45希腊雅典的帕特农神庙的构造依靠的是利用黄金矩形、视错觉、精密测量和将标准尺寸的柱子切割成呈精确规格(永远使直径成为高度的 13)的比例知识(如右图)。

2.46拜占庭时期的建筑通常由正方形、圆、立方体和带拱的半球等概念组合而成(如下左图)。

2.47按照等差数列排列的宁夏一百零八塔

3. 数学之美在建筑设计中的表现

在建筑几何美中,建筑的整体和部分以某种统一的几何形式反映其共同本质特征,这种“统一的几何形式”可视之为全息胚。建筑全息胚不仅是一种几何形式,也可以是一种空间形态,一种逻辑关系或者是它们的混合体等。高层建筑几何美蕴育着全息美学价值,主要体现在:一方面,建筑几何形式的全息胚反映高层建筑几何特征的本质或内容,强调几何形式和本质特征、内容的相关性,是建筑和外部条件的统一;另一方面,建筑的整体与部分之间以及部分与部分之间应以某种几何形式的全息胚得到统一,突出形式和形式的自相似性,是建筑对自身的统一。

历史上许多建筑都表达了全息美,如古罗马斗兽场的主要功能是观演,采用了圆的几何形式,在相同的周长中,圆形所能围成的面积最大;而就观看效果而言,圆形看台比较理想。所以,斗兽场的功能内容决定了它的基本形式是圆,圆的几何特征也构成了它的全息胚。如圆形甬道、放射形的筒形拱、圆拱券和圆形壁柱等。斗兽场几何空间、形式、装饰等表现都因为具有了圆形的几何特征而得到了统一。

建筑,只有数与形结合,才更具有神韵,数学赋予了建筑活力,同时它的美也被建筑表现得淋漓尽致,当你在欣赏一座跨海大桥时,其实是在不知不觉中惊叹大桥的静定多跨结构中包含的数学和自然融合美的成分。千百年来,数学已成为设计和构图的无价工具.它既是建筑设计的智力资源,也是减少试验、消除技术差错的手段。

建筑的抽象形式包含着丰富的意蕴,这就是隐藏在其抽象几何形式背后的意义、思想、情感和精神等内在因素及其人们的生活内涵。任何几何抽象的高层建筑都是艺术自由美的表现,它挣脱了具象形态的羁绊,但并没有因此而失去意义,反而具有更为广阔的遐想空间,俄国着名画家康定斯基充分论证这个观点。因此,抽象构图的高层建筑剔除了具象模仿,代之以几何图形,通过几何秩序和规则的体现,表达了某种时代精神,打破了物象意义的羁绊,意蕴自由而丰富。

在意向体验中,高层建筑几何抽象的意蕴美是通过视域的连续交融而直接构成几何图形的非具象的价值意义,如崇高、神秘、骚动和平静等。几何抽象把美的规律和要素提炼、浓缩、凝聚起来,像醇酒、像干酪,越品越嚼越有味,这需要审美者有深厚的功力,谙熟其艺术规律,方能超凡脱俗,潇洒自如。

胡塞尔的意向学理论证实了这种说法,其理论中的“构成边缘域”思想认为直观体验中达到对某物的意识,体验的根本方式不可能是感觉表象的,也不会是概念规范的,而只能是在一个有边缘视野的意向境域中进行的,这实质上就说明了抽象的不确定性所包含的意蕴丰度。

结论

数学和建筑不但具有数学美、建筑美,而且具有绘画美和文学美。建筑,只有数与形结合,才更具有神韵,数学赋予了建筑活力,同时它的美也被建筑表现得淋漓尽致,当你在欣赏一座跨海大桥时,其实是在不知不觉中惊叹大桥的静定多跨结构中包含的数学和自然融合美的成分。数学美是一种客观存在,是自然美在数学中的反映。建筑在数学思维的启发下不断发展为世界创造和谐美拜占庭时期的建筑师们将正方形、圆、立方体和带拱的半球等概念优雅地组合起来,就像他们在康士坦丁堡的索菲娅教堂里所运用的那样;埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算,以提高音响效果,并使观众的视域达到最大圆、半圆、半球和拱顶的创新用法成了罗马建筑师引进并加以完善的主要数学思想文艺复兴时期的石建筑物,显示了一种在明暗和虚实等方面都堪称精美和文雅的对称……
  随着新建筑材料的发现,适应于这些材料最大潜力发挥的新的数学思想也应运而生。用各种各样可以得到的建筑材料,诸如石头、木材、砖块合成材料等等,建筑师们能够设计出实质为任何形状的建筑物。在近代,我们能亲眼见到双曲抛物体形式的建筑物旧金山圣玛丽大教堂、抛物线型的机棚、模仿游牧部落帐篷的立体组合结构、支撑东京奥林匹克运动大厅的悬链线缆,以及带有椭圆顶天花板的八角形房屋,中国北京的奥林匹克运动会的主场馆鸟巢与水立方的遥相辉映等等。我们常说“简约而不简单”,建筑就是一种能够最终归结为数学的简约的艺术。

本文来源:https://www.2haoxitong.net/k/doc/07fe80f92cc58bd63186bdd1.html

《建筑与数学的PPT资料.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式